Arctic Heating Up 4 Times Faster Than Global Warming: Study
Jul 9, 2022 | Pratirodh BureauThe Arctic is heating up more than four times faster than the rate of global warming, according to a new analysis of observed temperatures.
The trend has stepped upward steeply twice in the last 50 years, a finding missed by all but four of 39 climate models, the researchers said.
The study does not pinpoint a cause for these relatively sudden increases, but the researchers speculate that contributing causes are probably sea ice and water vapour feedback combined with changes in how atmospheric and oceanic heat move into the Arctic.
“Thirty years is considered the minimum to represent climate change,” said Petr Chylek, a physicist and climate researcher at Los Alamos National Laboratory, US, and lead author of the study published in the journal Geophysical Research Letters.
“We decreased the time interval to 21 years. At that smaller time scale, and contrary to previous investigations that found the Arctic amplification index increases in a smooth way, we observed two distinct steps, one in 1986 and a second one in 1999,” Chylek said.
Because the decade-by-decade episodic trend identified by Chylek and his collaborators affects global weather and sea levels, accurately projecting future climate change in smaller timeframes is essential for planning any mitigation of its impacts and developing adaptation strategies.
The researchers noted that the Arctic influences the world’s climate and weather, and the melting of the Greenland ice sheet causes sea-level rise that threatens many coastal communities.
The amplification index in the study is the ratio of an Arctic 21-year temperature trend versus an overall global 21-year temperature trend, they said.
The study calculated the Arctic amplification index to be greater than 4 within the early decades of the 21st century, four times faster than the global mean and considerably more rapid than previous published research had determined using 30- to 40-year time intervals.
These earlier studies pegged the index between 2 and 3, the researchers said.
From 39 climate-change models in the widely used CMIP6 collection of the Coupled Model Intercomparison Project, the research team found four that reproduced the first step reasonably well around 1986, but none that reproduced the second step in 1999.
CMIP is an international collaborative of climate models using a shared set of parameters. CMIP6 has been used to create the recent Intergovernmental Panel on Climate Change Assessment Report.
“We attributed the first step to increasing concentrations of carbon dioxide and other pollutants in the atmosphere, because several models do it correctly, but the second step we think is due to climate variability because none of the models can reproduce the second step,” Chylek said.
Short-term climate variability is typically undetected by climate models with their 30-year-plus-long timescales, the researchers said.
Future increases in the Arctic amplification index are likely to be smaller as the temperature difference between the Arctic and the tropics decreases, they said.